Early Identification and Localization Algorithm for Weak Seedlings Based on Phenotype Detection and Machine Learning

نویسندگان

چکیده

It is important to propose the correct decision for culling and replenishing seedlings in factory seedling nurseries improve quality of save resources. To solve problems inefficiency subjectivity existing traditional manual replenishment seeds, this paper proposes an automatic method discriminate early growth condition seedlings. Taking watermelon plug as example, Azure Kinect was used collect data its top view three times a day, at 9:00, 14:00, 19:00. The were collected from time germination main leaf growth, manually determined be strong or weak on last day collection. Pre-processing, image segmentation, point cloud processing methods performed obtain plant height area each seedling. sixth predicted using LSTM recurrent neural network first days. R squared prediction 0.932 0.901, respectively. dichotomous classification normal abnormal six machine learning methods, such random forest, SVM, XGBoost, data. experimental results proved that forest had highest accuracy 84%. Finally, appropriate decisions are given based results. This can provide some technical support theoretical basis transplanting robots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements

Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...

متن کامل

Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning

Seedling vigor in tomatoes determines the quality and growth of fruits and total plant productivity. It is well known that the salient effects of environmental stresses appear on the internode length; the length between adjoining main stem node (henceforth called node). In this study, we develop a method for internode length estimation using image processing technology. The proposed method cons...

متن کامل

investigating the effect of motivation and attitude towards learning english, learning style preferences and gender on iranian efl learners proficiency

تحقیق حاضر به منظور بررسی تاثیر انگیزه و نگرش نسبت به یادگیری زبان انگلیسی، ترجیحات سبک یادگیری و جنسیت بر بسندگی فراگیران ایرانی زبان انگلیسی انجام شد. برای این منظور، 154 فراگیر ایرانی زبان انگلیسی در این تحقیق شرکت کردند. سه ابزار جمع آوری داده ها شامل آزمون تعیین سطح بسندگی زبان انگلیسی آکسفورد، پرسشنامه ترجیحات سبک یادگیری براچ و پرسشنامه انگیزه و نگرش نسبت به یادگیری زبان انگلیسی به م...

Machine Learning Based Localization

A vast majority of localization techniques proposed for sensor networks are based on triangulation methods in Euclidean geometry. They utilize the geometrical properties of the sensor network to infer the sensor locations. A fundamentally different approach is presented in this chapter. This approach is based on machine learning, in which we work directly on the natural (non-Euclidean) coordina...

متن کامل

An Optimum Algorithm for Single Machine with Early/Tardy Cost

The problem of determining the sequence of a set of jobs with the objective function of minimizing the maximum earliness and tardiness in one machine is studied. Production systems like JIT are one of the many applications of the problem. This problem is studied in special cases and their optimal solutions are introduced with simple orders. In general, some effective conditions for neig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agriculture

سال: 2023

ISSN: ['2077-0472']

DOI: https://doi.org/10.3390/agriculture13010212